- ·上一篇文章:2019年贵州省人民警察招考(2020年贵州公安招特警)
- ·下一篇文章:事业单位职业能力测试做题顺序(事业单位职业能力测验题型)
数学剩余问题公式(剩余问题例题)
在公务员行测考试中整除的问题经常出现,而在整除的基础上又衍生出不能整除的问题,即有余数的问题也不断的出现,下面将介绍特殊的剩余问题,即余同问题、和同问题以及差同问题。
一、剩余定理的特殊情况
(1)余同(余数相同):除数的最小公倍数+余数
例题1:三位数的自然数P满足:除以4余2,除以5余2,除以6余2,则符合条件的自然数P有多少个?
A.120 B.122 C.121 D.123
【答案】B。
【解析】一个数除以4、5、6均余2,余数相同,属于余同,因此这个数满足通项公式N=60n+2,(n=0,1,2,3……),当n=2时,N=122,选择B项。
(2)和同(除数和余数的和相同):除数的最小公倍数+和(除数加余数的和)
例题2:三位数的自然数P满足:除以5余3,除以6余2,除以7余1,则符合条件的自然数P有多少个?
A.3 B.2 C.4 D.5
【答案】D。
【解析】此题除数与余数的和相加均为8,则该自然数应满足N=210n+8(n=0,1,2……),因此在0至999以内满足题干条件的自然数有8,218,428,638,848五个数,因此选D。
(3)差同(除数减余数之差相同):除数的最小公倍数-差(除数减余数的和)
例题3:某校三年级同学,每5人一排多1人,每6人一排多2人,每7人一排3多人,问这个年级至少有多少人?
A.206 B.202 C.237 D.302
【答案】A。
【解析】
方法一:代入排除法(略)。
方法二:通过观察发现除数与余数的差均为4,所以此数满足:N=210n-4(n=1,2,3……),当n=1时,算得次数为206,因此选A。
二、剩余定理的一般情况
例题4:一个自然数P同时满足除以3余1,除以4余3,除以7余4,求满足这样条件的三位数共有多少个?
A.10 B.11 C.12 D.13
【答案】B。
【解析】先取其中两个条件,除以3余1,除以4余3,即P=4n+3=3a+1,等式两边同时除以3,等式左边的余数为n,等式右边的余数为1,即n=1,代入上式可知满足上述两个条件的最小的数为7,则同时满足上述两条件的数的通项公式为P=12n+7……①,再将①式所得的条件与题干中除以7余4的条件组合成新的条件。即满足题干中三个条件的数P=12n+7=7b+4,等式两边同时除以未知数较小的系数7,则左边余数为5n,等式右边的余数是4,也可认为余数是25,即5n=25,求解得n=5,代入到①式中,即同时满足题干中三个条件的最小的自然数P=67,则满足题干三个条件的数的通项公式为P=84n+67(n=0,1,2,3……)即100≦84n+67≦999可求得1≦n≦11,即符合题意的数共有11-1+1=11个数。
例题5:一个自然数P同时满足除以11余5,除以7余1,除以5余2,求满足这样条件的三位数共有多少个?
A.9 B.10 C.11 D.12
【答案】D。
【解析】通过观察会发现前两个条件属于差同,所以满足前两个条件的数的通项公式P=77n-6(n=0,1,2,3……),即100≦77n-6≦999可求得2≦n≦13,即符合题意的数共有13-2+1=12个数,因此选D。
从上面的例题中我们可以总结出以下关系:
如果一个数Q除以m余数是a,除以n余数是a,除以t余数是a,那么这个数Q可以表示为:
Q=a+(m、n、t的最小公倍数)N,N为整数,a是相同的余数。
如果一个数Q除以m余数是a-m,除以n余数是a-n,除以t余数是a-t,那么这个数Q可以表示为:
Q=a+(m、n、t的最小公倍数)N,N为整数,a是除数同余数的加和。
如果一个数Q除以m余数是m-a,除以n余数是n-a,除以t余数是t-a,那么这个数Q可以表示为:
Q=(m、n、t的最小公倍数)-a N-a,N为整数,a为相同的除数和余数的差。
不管题目怎么变化,只要记住这3个关系,在考试中的剩余问题都是可以迎刃而解的。
相关文章:
第1篇 申论乡村振兴人物(乡村振兴申论人物例子素材) 作者:admin
【热点背景】习近平总书记日前在海南考察时强调,推动乡村全面振兴,关键靠人。让能人大施所能、大展才华、大显身手,乡村才能建设好。乡村振兴中的“人才”,他们有经验、懂管理、会经营,为农村的发展注入新活力。我国农业农村工作的重心从脱贫攻坚转向了乡村振兴,乡村的发展方式从外生驱动型转向了内生发展型,这也为乡
第2篇 民贵惟贤 所宝惟谷(民为贵出自) 作者:admin
“珍珠为宝,粮食为金”,粮食安全关乎民生幸福,粮食安全关乎社会稳定,粮食安全关乎国家发展。追忆往昔,一部中华文明史就是一部与饥饿的斗争史。康熙元年,吴川大饥,二年,合肥饥;雍正元年通州饥,二年春,蒲台大饥;1959——1961年中国全国性饥荒……吃饭问题始终是国家的头等大事,也是撬动国之根本的因素。因此,我们必须牢牢坚守发展基本国策,将粮食安全掌握在自己手中。保障粮食安全
第3篇 走进学生的内心(走进学生心里的心得体会) 作者:admin
古人云:亲其道,信其师。良好和谐的师生关系,是走进学生心里的关键,能让教师“不战而屈人之兵”,提升教育教学效果。作为既教书又育人的教师来说,只有真诚,深沉的爱生情感,才可使教育获得成功的源泉所在,也是教
第4篇 2019年四川公务员面试组织管理类题目答题技巧(2019年四川公务员面试组织管理类题目答题技巧解析) 作者:admin
组织管理题型中的微观类题目越来越多,出现在四川公务员面试中也极有可能,它对考生的能力要求更高,从而使很多考生无所适从,不知如何找到题目所要求的作答点。这需要考生具备宏观类题目能力之外的另外一种能力,即挖掘和分
第5篇 监护的设立名词解释(监护的设立方式有哪些) 作者:admin
【导读】一、平和状态的监护人选任:(一)法定监护1、未成年人的法定监护人当然监护人:父母。需注意:父母离婚,不影响法定监护关系,离婚后父母仍然是未成年人的法定监护人,只是监护责任的轻重有所不同。父母死亡或者没有监护能力的,由下列有监护能力的人按顺序担任监护人:第一顺序:祖父母、外祖父母;第二顺序:兄、姐;第三顺序:其他愿意